Theory of Jet Substructure and EIC Potential

Duff Neill, LANL

Jet Observables at the EIC BNL, virtually. July 27, 2020

Initial Outline

- Outline highly technical details of Jet Substructure at LHC.
- Proselytize for Soft-Collinear Effective Theory.
- Advertise for my own research.

Initial Outline

- Outline highly technical details of Jet Substructure at LHC.
- Proselytize for Soft-Collinear Effective Theory.
- Advertise for my own research.

We will have plenty of technical talks,

Review: [Larkoski, Moult, Nachman 1709.04464]

Revised Outline

- What?
- Why?

What is the purpose of Jet Substructure?

Jet substructure was born in the context of the LHC. Its (initial) Mission:

- \bullet Tag H/Z/W/tops decaying hadronically.
- 2 Find new physics.

What is the purpose of Jet Substructure?

Jet substructure was born in the context of the LHC. Its (initial) Mission:

- \bullet Tag H/Z/W/tops decaying hadronically.
- 2 Find new physics.

At an EIC we will do neither.* So why jet substructure?

*At least, "new" physics in a HEP sense.

Jet Substructure for the LHC.

QCD was not a motivation (explicitly)...

To accomplish its mission,
jet substructure had to understand QCD better.*

Reason:

Finding a thing in Pythia is not finding a thing in Nature.

*Until Machine Learning Happened.

EIC and jet substructure.

However, the mission of the EIC is to understand QCD better.

• The obstacle is the goal.

• The obstacle is the goal.

This is what we should keep in mind.

• The obstacle is the goal.

This is what we should keep in mind. Not just blindly port substructure observables. So what were we really doing in jet substructure?

What we are Officially Doing

When engaging in jet substructure at the LHC, we wished to identify the progenitors of a jet:

- Quark Versus Gluon.
- QCD versus Higgs, Z, W^{\pm} .
- Top quarks.
- New physics versus Standard Model.

So what were we *really* doing?

- How do charges in a quantum field theory transport through a collision process, dominated by strongly interacting dynamics?
- Can these charges constitute an asymptotically well-defined observable?

Charges:

- Color.
- Flavor.
- Electro-weak.
- Momentum.
- Angular Momentum.

So what were we *really* doing?

- How do charges in a quantum field theory transport through a collision process, dominated by strongly interacting dynamics?
- Can these charges constitute an asymptotically well-define observable?
 - EIC: we won't get "new" physics.*
 - It is these questions that are interesting, and it is the ones we get to keep.

^{*}Neither, apparently, will the LHC.

Advantages and Challenges

So what will be the advantages of EIC (versus LHC or RHIC)?

- Little underlying event, scattering processes can be isolated.
- Control over *initial* states:
 - Polarization.
 - 2 Initial momenta.
 - Heavy Ions.
- SIDIS:
 - **1** Total invariant mass of *final* states (e^+e^-) .
 - 2 Control of partonic initial states

Advantages and Challenges

The challenge, we **must** confront nonperturbative physics:

LHC:
$$1 \gg \frac{m_J}{Q_H} \gg \frac{\Lambda}{m_J}$$

EIC: $1 \gg \frac{m_J}{Q_H} \ge \frac{\Lambda}{m_J}$

 Q_H hard scale, m_J jet substructure scale.

Jet Substructure at LHC

- Spectrum of 2 subjets in a jet at LHC. [1710.06859, 1710.00014]
- N.P. Physics: dotted \rightarrow dashed
- Understanding scaling properties of N.P. sufficed.

N.P. physics a simple re-arrangement of cross-sections at LHC.*

^{*}With grooming.

Jet Structure at EIC

- Frequency of jets in SIDIS, found by Centauro, at EIC carrying momentum fraction z_{jet} of final state. [2006.10751]
- $R \to 0$ fragmentation.
- This is just jet *structure*.
- N.P. Physics: orange \rightarrow purple

N.P. physics a dramatic re-arrangement of cross-sections at EIC.

It is not that there will be no jets, but substructure will be non-perturbative. It is not that there will be no jets, but substructure will be non-perturbative, and this is good.

Perturbation Theory and Jets

Perturbation theory is in excellent shape.

$$\begin{split} \alpha_s \ln \frac{m_J}{Q_H} &\sim 1 \\ d\sigma &= \alpha_s \ln^2 \frac{Q_J}{Q_H} + \alpha_s^2 \ln^4 \frac{Q_J}{Q_H} \ldots + \alpha_s \ln \frac{Q_J}{Q_H} + \ldots \\ &= O(\alpha_s \ln^2) + O(\alpha_s \ln) + O(\alpha_s^2 \ln) + O(\alpha_s^3 \ln) + O(\alpha_s^4 \ln) + \ldots \end{split}$$

Very incomplete list:

- NLL+(N)LO mandatory, and describes (LHC) data well.
- NNLL routine [Banfi, McAslan, Monni, Zanderighi 1412.2126], [Bell, Rahn, Talbert 1812.08690,2004.08396].
- N³LL achievable [Moch, Vermaseren, Vogt hep-ph/0403192], [Becher, Schwartz, 0803.0342], [Li, Neill, Zhu 1604.00392, Li, Zhu 1604.00392], [Kardos, Larkoski, Trocsanyi 2002.00942].
- N⁴LL coming 800n [Moch, et al. 1707.08315, Vogt et al. 1808.08981],
 [Bruser, Liu, Stahlhofen 1804.09722], [Banerjee, Dhani, Ravindran 1805.02637],
 [Bruser, Liu, Stahlhofen 1804.09722],
 [Luo, Yang, Zhu, Zhu 1912.05778],
 [Ebert, Mistlberger, Vita 2006.03056].

Perturbation Theory and Jets

Even at $\alpha_s(2GeV) \sim 0.3$, this is $\sim 3\%$ uncertainty!

Perturbation Theory and Jets

Why perturbation theory is in excellent shape:

- Derive Factorization Formula (Soft Collinear Effective Field Theory or otherwise).
- Write anomalous dimensions in terms of integrals over universal matrix elements.
- Ocliaborate with a higher order loop calculation specialist, or become one.

This is not to say we are done with perturbation theory.

Non-Perturbative Theory

Ask Pythia and Herwigg...

More seriously, Non-Perturbative Theory

Some first principles:

- Understanding of scaling and universality: [Dokshitzer, Marchesini, Webber hep-ph/9512336, hep-ph/9504219], [Lee, Sterman hep-ph/0611061].
- Fragmentation for heavy quarks & NRQCD [Bodwin,Braaten,Lepage hep-ph/9407339].
- Actual N.P. calculation of anomalous dimension: [Ji 1305.1539], [Ebert, Stewart, Zhao 1811.00026], [Shanahan, Wagman, Zhao 2003.06063].

Non-Perturbative Theory

LHC and grooming allowed us to shuffle around this problem.

• The Potential for the EIC is to force us to become better at understanding and predicting non-perturbative physics in dynamical processes.

Non-Perturbative Theory: what is needed.

To really make progress for jet substructure for EIC:

- OPE for "time-like condensates."
- Lattice QCD for "time-like condensates."
- String model \rightarrow Effective string theory $(N_c \gg 1?)$.
- Lessons from Ads/QCD?
- Field theory constructions for parton/hadron duality.
- Entirely new EFT for hadronization?

The advantage of EIC versus LHC or RHIC will be a clean environment to engage these questions.

Non-Perturbative Theory: Observables

So which observables?

- How do charges in a quantum field theory transport through a collision process, dominated by strongly interacting dynamics?
- 2 Can these charges constitute an asymptotically well-defined observable, even non-perturbatively?

Charges:

- Color.
- Flavor.
- Electro-weak.
- Momentum.
- Angular Momentum.

